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Preface


This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Who this book is for

Beginners will find comprehensive coverage of foundational topics, while more experienced programmers will delve into advanced subjects, such as preventing double-form submissions and implementing offline pessimistic and optimistic locking techniques.

Download the code files

The complete code for this book is available on the GitHub repository at https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python Each chapter's content is organized into separate branches, allowing you to practice alongside the book.

How to use the book

For beginners, a sequential reading of this book is recommended, as each chapter incrementally adds to the knowledge from the previous one. Experienced developers can directly jump to specific chapters or sections aligned with their interests or areas where they seek a more profound understanding.

As readers progress through the chapters of this book, the invitation is extended to share knowledge and contribute to the community. The hope is that this book enriches the reader’s experience and is enjoyable to read, just as intended during the writing process.

What this book covers

This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Chapter 1: Introduction to Django and Python

This chapter introduces Python and the Django framework, detailing Django's philosophy, the latest features in Django 4.2, and the compatibility of Python's syntax and semantics with Django.

Chapter 2: Setting Up Your Development Environment

This chapter guides you through establishing a reliable development environment, including Python installation, version management with pyenv, and creating isolated environments with poetry, equipping you for efficient Django development.

Chapter 3: Getting Started with Django Projects and Apps

This chapter introduces you to the initial steps of starting Django projects and apps. You'll learn about the Django project structure, the role of each component, Django's MVT architecture, configuring Django projects, and a brief introduction to Django's development server.

Chapter 4: Django Models and PostgreSQL

 This chapter, focused on Django models and PostgreSQL integration, delves into creating models, Django's database API, ORM, queries, aggregations, and ensuring data integrity with model constraints.

Chapter 5: Django Views and URL Handling

This chapter explores the creation of views and management of URLs in Django, which are critical components in building the user interface of a Django application.

Chapter 6: Using the Django Template Engine

This chapter explores the Django Template Engine. Learn to create dynamic HTML content for Django apps, including static files, template inheritance, and custom template tags and filters.

Chapter 7: Forms in Django

This chapter covers handling and creating forms in Django, a crucial aspect of user interaction. It includes advanced form handling like ModelForms, Formsets, and techniques to prevent double form submission.

Chapter 8: User Authentication and Authorization in Django

This chapter provides a detailed look at Django's built-in tools for user authentication and authorization. It explains how to manage users and their access levels.

Chapter 9: Django Ninja and APIs

This chapter introduces Django Ninja, a modern framework for building APIs with Python and Django, focusing on creating efficient, robust, and scalable APIs.

Chapter 10: Testing with pytest

This chapter introduces pytest, guiding you through writing practical tests for Django apps. It covers testing views and forms, ensuring code reliability and maintainability.

Chapter 11: Deploying Django Applications with Gunicorn and Docker

This chapter discusses deploying Django applications using Gunicorn and Docker. It includes insights into creating Dockerfiles, configuring Kubernetes clusters, and adding liveness and readiness probes for application scaling.

Chapter 12: Final Thoughts and Future Directions

This concluding chapter reflects on building a Django task management app and looks ahead at Django's future. It discusses the Django ecosystem, additional tools, and staying updated with the community.
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CHAPTER 1

Introduction to Django and Python


Introduction

Django has proven to be a robust and reliable framework, making it a popular and demanded tool in the Python ecosystem. Its high-quality standards and versatility enable the creation of unique web applications. In this chapter, we will dive into the core features of Python and explore how they interact with Django to promote effective web development. We will guide you through the philosophies of Django and explain why following them from the beginning is essential for a successful project. You will learn Python’s language nature of dynamically and strongly typed language, which are fundamental to master. In addition, we will highlight the importance of Python’s style guide, PEP 8, which guarantees the craft of clean, professional, and comprehensible code. As we conclude this chapter, a deeper understanding of the framework’s features will increase your productivity.

Structure

In this chapter, we will cover the following topics:


	Introduction to Python

	Introduction to Django

	The Django Philosophy

	Notable features of Django 4.2

	Python Syntax and Semantics

	Python for Django

	Conclusion



Introduction to Python

Python is a strongly and dynamically typed language. Dynamically typed means that the type checking is being done at runtime and is strongly typed because it does not implicitly convert types under most circumstances.








	
	
Statically Typed


	
Dynamically Typed





	
Strongly Typed


	
Java, C#, C++


	
Python, Ruby





	
Weakly Typed


	
C, C++


	
JavaScript, PHP






Table 1.1: Categorization of programming languages based on two different typing characteristics

Working with a dynamically typed language for the first time could be a shock for software developers used to statically typed, and it could feel incorrect. If you are coming from Java or C#, you must change your mindset and learn a new way of coding without private methods or interfaces in the traditional sense.

To contrast the difference between strong and weak typing, let’s compare JavaScript and Python.

JavaScript:

console.log([] + []); // prints: ""

// things can get more interesting

console.log([] + {}); // prints: "[object Object]"

console.log({} + []); // prints: "[object Object]"

As you can see, JavaScript doesn’t throw any errors, and the results of the operations are peculiar (and can seem unexpected).

However, with Python, things are quite different:

print([] + []) # prints: []

print([] + {}) # Raises TypeError

Python’s strongly typed nature leads to different behaviors than JavaScript’s weakly-typed nature. The first operation returns expected, and refusing to convert values silently could prevent bugs.

Understanding variables as references

Python differs from other programming languages; it doesn’t need to declare variable types beforehand. In Python, variables act as pointers to objects, not the objects themselves.

To understand how it works, check this simple Python code:

x=5

y=x # At this point, x and y point to the same object 5.

print(id(x)) # outputs the integer 139691746963400

print(id(y)) # outputs the integer 139691746963400

x=10 # Now, x points to a different object, 10, but y still points to 5.

print(id(x)) # outputs 139691746963560

The id() function is used to print the unique identifier for objects that x and y are referencing. The first two call returns the same ID since x and y are referencing the same object. The third call of id prints a different id since x references a different object now.

Parameter passing

Python uses the pass-by-object-reference strategy when passing parameters. This approach means that references to the objects are passed and not the copies; this translates to cheaper function calls since object copy is expensive.

For immutable objects like strings or integers, Python doesn’t modify the variable value beyond the function’s scope:

def update_number(n: int) -> None:

n = 10

x = 5

update_number(x)

print(x) # prints: 5

However, extra caution is necessary when working with mutable objects. When a function or method changes a mutable object, it can produce unexpected side effects.

def update_list(numbers: list[int]) -> None:

numbers.append(10)



x = [5]

update_list(x)

print(x) # prints: [5, 10]

Remember that the function directly interacts with the original object in memory, not a copy of it. Such behavior might not align with a programmer’s intentions, and it’s the reason for hard-to-detect bugs.

Mutability and immutability have been two approaches discussed for a long time. Immutability brings more safety and fewer side-effects to your code and therefore makes it easier to reason about. However, mutability can be interesting for performance and flexibility during development. Both approaches are valid and can co-exist. You will have to decide how to tackle your problems.

Interfaces or protocols

In Python, you can create an abstract base class as an interface for implementing subclasses. The ABC can specify some methods that any child classes must implement.

from abc import ABC, abstract method

class AbstractAnimal(ABC):

@abstractmethod

def make_sound(self) -> str:

pass



class Dog(AbstractAnimal):

def make_sound(self) -> str:

return "Woof!"

Sometimes, you may not find any abstract base classes in Python codebases, and the contract could be implicit. This concept is often called duck typing - If it walks like a duck and it quacks like a duck, then it must be a duck. With duck typing, the type or class of an object is less important than its methods and properties. Duck typing enables a polymorphism where the developer doesn’t require the object to be of a specific type but only to implement certain methods or properties. The implicit interface allows developers to replace objects with different implementations as long as the replacements fulfill the same contract, i.e., they have all the required methods and properties.

Duck typing is an inherent feature of Python and many other dynamically typed languages where type-checking is done at runtime. The principle allows for greater flexibility in code, but it also places more responsibility on the developer to ensure that objects are properly used.

Standard modules

Python’s standard library is vast and includes numerous modules. Given its broad scope, covering all of it in an introductory segment is impossible. This section will show the most common modules used while working with a Django project.

Let’s start with pathlib, an object-oriented module to handle filesystem paths. One of its common usages is in the settings of the project.

Let’s see an example:

from pathlib import Path

# BASE_DIR is the project root (the directory containing manage.py)

BASE_DIR = Path(__file__).resolve().parent.parent

# This is how you would define the location of the static files directory

STATIC_ROOT = BASE_DIR / 'staticfiles'

As you can see, the / is the operator to join paths; the pathlib module was introduced in Python 3.4, and it offers a great way to handle the filesystem.

JavaScript Object Notation (JSON) is a universally recognized format for storing and transferring data. Converting objects to JSON is named serialization, while the reverse is called deserialization. The standard library has a module that works with JSON, the json module.
OEBPS/nav.xhtml
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