
[image: image]

Ultimate Django for
Web App
Development Using
Python

[image:]

Build Modern, Reliable, and Scalable
Production-Grade Web Applications
with Django and Python

[image:]

Leonardo Luis Lazzaro

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: January 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96815-11-0

www.orangeava.com

About the Author

Born in Buenos Aires (la Ciudad de la Furia), Argentina, Leonardo Luis Lazzaro has always been fascinated by the idea of creating something out of nothing. His first contact with computers began at an early age, fueled by classic video games like Maniac Mansion and Monkey Island.

By the age of 12, Leonardo was already running his own Bulletin Board System (BBS) using ProBoardBBS Software, making him one of the youngest participants in online communities in Argentina. The BBS allowed him to meet other tech enthusiasts who introduced him to the programming world. His fascination with computer demos from the demoscene became a strong motivation for his continued discovery in programming.

Leonardo's academic path led him to study computer science at the prestigious Facultad de Ciencias Exactas, Universidad de Buenos Aires (UBA). He embarked on a Ph.D. in drug discovery, trying to apply computational skills to solve highly complex challenges on GPU simulations. However, his journey took a turn, leading him away from the academic world and becoming a Ph.D. dropout.

With 12 years of experience in Python, Leonardo has developed a profound expertise in this programming language. He is proficient in several Python frameworks, including Flask, Pyramid, Django, FastAPI, and others, showcasing his versatility and deep understanding of web development and application design.

About the Technical Reviewer

David Wobrock is a seasoned software engineer in the domains of backend web development, cybersecurity, and developer experience for multiple years. As an active contributor to Django, he plays a significant role in the Django Triage & Review team, showcasing his commitment to the advancement of the framework. Within Django, his primary focus revolves around contributions to the Django ORM and database migrations. Additionally, David is dedicated to maintaining open-source Python packages within the Django ecosystem.

He has worked for several startups, contributing not only to the growth of their technical stacks with reliable and secure software but also enhancing team efficiency by providing internal tools, guidelines, and best practices within the organizations. He believes that having the right tools, which make it easy for developers to do the right thing, is essential for building a great developer experience. Thus, when these tools are enablers for teams, they not only become more efficient but also build more reliable, scalable, and secure products.

Acknowledgements

Since childhood, I’ve always been fascinated by creating something from nothing. As a child, my imagination had intricate ideas, many of which magically took on lives of their own. This magical ability to turn thought into reality has stayed with me until now. This very power of creation has given life to this book.

This book is not a tribute to a single individual. Instead, it stands as a mark of respect and recognition for the open-source community. This work is a testament to the community's spirit of collaboration and shared knowledge.

To my readers, I offer this book as a guide into the world of Django. The book was crafted not from a place of ego but to contribute to our community's knowledge.

Special thanks to Nicolas Rebagliati for his review of Chapter 4. His insightful feedback and attention to detail have significantly enhanced the chapter, greatly contributing to the book's overall quality.

Preface

This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Who this book is for

Beginners will find comprehensive coverage of foundational topics, while more experienced programmers will delve into advanced subjects, such as preventing double-form submissions and implementing offline pessimistic and optimistic locking techniques.

Download the code files

The complete code for this book is available on the GitHub repository at https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python Each chapter's content is organized into separate branches, allowing you to practice alongside the book.

How to use the book

For beginners, a sequential reading of this book is recommended, as each chapter incrementally adds to the knowledge from the previous one. Experienced developers can directly jump to specific chapters or sections aligned with their interests or areas where they seek a more profound understanding.

As readers progress through the chapters of this book, the invitation is extended to share knowledge and contribute to the community. The hope is that this book enriches the reader’s experience and is enjoyable to read, just as intended during the writing process.

What this book covers

This book guides readers through building a comprehensive web application using Django and Python. Each chapter builds upon the last, from setting up a development environment to deploying a fully functional application running in a Kubernetes cluster.

Chapter 1: Introduction to Django and Python

This chapter introduces Python and the Django framework, detailing Django's philosophy, the latest features in Django 4.2, and the compatibility of Python's syntax and semantics with Django.

Chapter 2: Setting Up Your Development Environment

This chapter guides you through establishing a reliable development environment, including Python installation, version management with pyenv, and creating isolated environments with poetry, equipping you for efficient Django development.

Chapter 3: Getting Started with Django Projects and Apps

This chapter introduces you to the initial steps of starting Django projects and apps. You'll learn about the Django project structure, the role of each component, Django's MVT architecture, configuring Django projects, and a brief introduction to Django's development server.

Chapter 4: Django Models and PostgreSQL

 This chapter, focused on Django models and PostgreSQL integration, delves into creating models, Django's database API, ORM, queries, aggregations, and ensuring data integrity with model constraints.

Chapter 5: Django Views and URL Handling

This chapter explores the creation of views and management of URLs in Django, which are critical components in building the user interface of a Django application.

Chapter 6: Using the Django Template Engine

This chapter explores the Django Template Engine. Learn to create dynamic HTML content for Django apps, including static files, template inheritance, and custom template tags and filters.

Chapter 7: Forms in Django

This chapter covers handling and creating forms in Django, a crucial aspect of user interaction. It includes advanced form handling like ModelForms, Formsets, and techniques to prevent double form submission.

Chapter 8: User Authentication and Authorization in Django

This chapter provides a detailed look at Django's built-in tools for user authentication and authorization. It explains how to manage users and their access levels.

Chapter 9: Django Ninja and APIs

This chapter introduces Django Ninja, a modern framework for building APIs with Python and Django, focusing on creating efficient, robust, and scalable APIs.

Chapter 10: Testing with pytest

This chapter introduces pytest, guiding you through writing practical tests for Django apps. It covers testing views and forms, ensuring code reliability and maintainability.

Chapter 11: Deploying Django Applications with Gunicorn and Docker

This chapter discusses deploying Django applications using Gunicorn and Docker. It includes insights into creating Dockerfiles, configuring Kubernetes clusters, and adding liveness and readiness probes for application scaling.

Chapter 12: Final Thoughts and Future Directions

This concluding chapter reflects on building a Django task management app and looks ahead at Django's future. It discusses the Django ecosystem, additional tools, and staying updated with the community.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Django-for-Web-App-Development-Using-Python

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/808c99

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

Table of Contents

1. Introduction to Django and Python

Introduction

Structure

Introduction to Python

Understanding variables as references

Parameter passing

Interfaces or protocols

Standard modules

Error handling

List comprehensions

F-Strings

Type hinting

Coding style

Introduction to Django

The Django Philosophy

Don’t repeat yourself

Loose coupling and High cohesion

Less code and quick development

Explicit is better than implicit

Models: Include all relevant domain logic

Separate logic from the presentation on templates

Views

Caching

Django 4.2 highlights

Support for psycopg3

Comments on columns and tables

In-memory file storage

Custom file storages

Updates in password validation

Minor updates and additions

Python for Django

Conclusion

Questions

2. Setting Up Your Development Environment

Introduction

Structure

Introduction to Development Environments

Managing Python Versions with Pyenv

Understanding Virtual Environments

Introduction to Poetry for Dependency Management

Setting up a Django Project with Poetry

Basic Configuration for a Django Project

Introduction to Git for Version Control

Creating a GitHub repository

Branching models

Git Flow

GitHub Flow

Trunk-based

Advanced Git Usage: Using Worktree

Conclusion

Questions

3. Getting Started with Django Projects and Apps

Introduction

Structure

Introduction to the task manager

Django project versus Django application

Creating a new Django project

Understanding the Django project structure

Starting your first Django app

Understanding the Django app structure

MVT design patterns in Django

Extending the MVT pattern with a service layer

Configuring your Django app

Brief introduction to Django’s development server

Running your first Django app

Conclusion

Questions

Exercises

4. Django Models and PostgreSQL

Introduction

Structure

Understanding Django models

Creating your first model

Django’s database API: Create, retrieve, update, and delete operations

Understanding Django migrations

Django’s admin interface: Registering models and manipulating data

Introduction to Django’s ORM: Queries and aggregations

Extending the models

Ensuring data integrity with model constraints

Conclusion

Questions

Exercises

5. Django Views and URL Handling

Introduction

Structure

Understanding Django Views

Introducing Django’s Generic Views

Writing Your First Django View

Class-based Views Mixins

URL Configuration in Django

Creating URL Patterns for your Views

Handling Dynamic URLs with Path Converters

Understanding Django’s URL Namespace and Naming URL Patterns

Using Django’s HttpRequest And HttpResponse Objects

Introducing to Function-based Views

Using Function-based Views with a Service Layer

Pessimistic and Optimistic Offline Locking using Views and a Service Layer

Error Handling with Custom Error Views

Conclusion

Questions

Exercises

6. Using the Django Template Engine

Introduction

Structure

Introduction to Django Template Engine

Django Template Language: Variables, Tags, and Filters

Inheritance in Django Templates

The Home Page View: Showing Tasks by Status

Custom Template Tags and Filters

Using Static Files in Django Templates: CSS, JavaScript, Images

Django Template Context Processors

Debugging Django Templates

Optimizing Template Rendering

Securing Django Templates

Conclusion

Questions

Exercises

7. Forms in Django

Introduction

Structure

Understanding Django Forms

Creating Your First Django Form

Rendering Forms in Templates

Handling Form Submission in Views

Working with Form Fields

Custom form fields

File and Image Upload Field

Data Validation with Django Forms

Validators

Clean methods

ModelForm Validation

Displaying Form Errors

Advanced Form Handling: ModelFormsSets and Formsets

Preventing Double Submission in Forms

Conclusion

Questions

Exercises

8. User Authentication and Authorization in Django

Introduction

Structure

Understanding Django’s Authentication System

Introduction to Django’s Middleware

Understanding Django Middleware

User Registration with Django’s User Model

Authenticating Users: Login and Logout

Managing User Sessions

Session customization

Session usage

Session good practices

Password Management in Django: Change and Password Reset

Protecting Views with Login Required Decorators

User Authorization: Permissions and Groups

Multi-tenant authentication with Custom Django’s User Model

Security Best Practices in Django

Update all your libraries and frameworks

Project Settings Hardening

Turn off Debug in production

Use Secure Cookies

HTTP Strict Transport Security (HSTS)

Content Security Policy (CSP)

X-Content-Type-Options

X-XSS-Protection

Secure Referrer Policy

Use Secure Password Hashing Algorithms

Limit Access to Admin

Keep SECRET_KEY Secret

Set ALLOWED_HOSTS

Conclusion

Questions

Exercises

9. Django Ninja and APIs

Introduction

Structure

Introduction to API design

API Design-first approach

HTTP Response status codes

Introduction to Django Ninja

Setting Up Django Ninja in Your Project

Building Your first API with Django Ninja

Request and Response Models with Pydantic

API Documentation

Understanding HTTP Methods in Django Ninja

API Pagination

Working with Path Parameters and Query Parameters

Validation and Error Handling in Django Ninja

Authenticating API Users

Securing APIs: Permissions and Throttling

Permissions

Throttling

Versioning Your API

Conclusion

Questions

Exercises

10. Testing with pytest

Introduction

Structure

Introduction to testing and pytest

Understanding test

Test-driven development

Introduction to pytest

Installing and setting up pytest for Django

Understanding Django test database and pytest

Pytest-django fixtures

Mocking and patching in tests

Behavior-driven development

Advanced pytest features: Parametrization, plugins, and configuration

Parametrization

Plugin coverage

Plugin xdist

Using marks

Configuration tips

Conclusion

Questions

Exercises

11. Deploying Django Applications with Gunicorn and Docker

Introduction

Structure

Introduction to Gunicorn

Configuring Gunicorn for Django Deployment

Understanding and Creating Dockerfiles for Django

Using the image registry

Introduction to Kubernetes

Cluster

Node

Scheduler

Pods

Deployments

ReplicaSets

Services

Configmaps and Secrets

Ingress

StatefulSets

Configuring a Kubernetes cluster for a Django application

Adding liveness and readiness probes

Adding Instrumentation for Django

Prometheus configuration

Jaeger configuration

Database Optimization: Queries and Indexing

Conclusion

Questions

12. Final Thoughts and Future Directions

Introduction

Structure

Summary of learnings: Building a task management app

Evaluating the Django ecosystem: Strengths and weaknesses

Exploring additional Django tools and libraries

Potential enhancements for the task management app

Staying updated with Django: Resources and communities

Career opportunities with Django skills

Thoughts on Django’s future: Upcoming features and trends

Tips for continued learning and improvement

Conclusion

Index

CHAPTER 1

Introduction to Django and Python

Introduction

Django has proven to be a robust and reliable framework, making it a popular and demanded tool in the Python ecosystem. Its high-quality standards and versatility enable the creation of unique web applications. In this chapter, we will dive into the core features of Python and explore how they interact with Django to promote effective web development. We will guide you through the philosophies of Django and explain why following them from the beginning is essential for a successful project. You will learn Python’s language nature of dynamically and strongly typed language, which are fundamental to master. In addition, we will highlight the importance of Python’s style guide, PEP 8, which guarantees the craft of clean, professional, and comprehensible code. As we conclude this chapter, a deeper understanding of the framework’s features will increase your productivity.

Structure

In this chapter, we will cover the following topics:

	Introduction to Python

	Introduction to Django

	The Django Philosophy

	Notable features of Django 4.2

	Python Syntax and Semantics

	Python for Django

	Conclusion

Introduction to Python

Python is a strongly and dynamically typed language. Dynamically typed means that the type checking is being done at runtime and is strongly typed because it does not implicitly convert types under most circumstances.

	
	
Statically Typed

	
Dynamically Typed

	
Strongly Typed

	
Java, C#, C++

	
Python, Ruby

	
Weakly Typed

	
C, C++

	
JavaScript, PHP

Table 1.1: Categorization of programming languages based on two different typing characteristics

Working with a dynamically typed language for the first time could be a shock for software developers used to statically typed, and it could feel incorrect. If you are coming from Java or C#, you must change your mindset and learn a new way of coding without private methods or interfaces in the traditional sense.

To contrast the difference between strong and weak typing, let’s compare JavaScript and Python.

JavaScript:

console.log([] + []); // prints: ""

// things can get more interesting

console.log([] + {}); // prints: "[object Object]"

console.log({} + []); // prints: "[object Object]"

As you can see, JavaScript doesn’t throw any errors, and the results of the operations are peculiar (and can seem unexpected).

However, with Python, things are quite different:

print([] + []) # prints: []

print([] + {}) # Raises TypeError

Python’s strongly typed nature leads to different behaviors than JavaScript’s weakly-typed nature. The first operation returns expected, and refusing to convert values silently could prevent bugs.

Understanding variables as references

Python differs from other programming languages; it doesn’t need to declare variable types beforehand. In Python, variables act as pointers to objects, not the objects themselves.

To understand how it works, check this simple Python code:

x=5

y=x # At this point, x and y point to the same object 5.

print(id(x)) # outputs the integer 139691746963400

print(id(y)) # outputs the integer 139691746963400

x=10 # Now, x points to a different object, 10, but y still points to 5.

print(id(x)) # outputs 139691746963560

The id() function is used to print the unique identifier for objects that x and y are referencing. The first two call returns the same ID since x and y are referencing the same object. The third call of id prints a different id since x references a different object now.

Parameter passing

Python uses the pass-by-object-reference strategy when passing parameters. This approach means that references to the objects are passed and not the copies; this translates to cheaper function calls since object copy is expensive.

For immutable objects like strings or integers, Python doesn’t modify the variable value beyond the function’s scope:

def update_number(n: int) -> None:

n = 10

x = 5

update_number(x)

print(x) # prints: 5

However, extra caution is necessary when working with mutable objects. When a function or method changes a mutable object, it can produce unexpected side effects.

def update_list(numbers: list[int]) -> None:

numbers.append(10)

x = [5]

update_list(x)

print(x) # prints: [5, 10]

Remember that the function directly interacts with the original object in memory, not a copy of it. Such behavior might not align with a programmer’s intentions, and it’s the reason for hard-to-detect bugs.

Mutability and immutability have been two approaches discussed for a long time. Immutability brings more safety and fewer side-effects to your code and therefore makes it easier to reason about. However, mutability can be interesting for performance and flexibility during development. Both approaches are valid and can co-exist. You will have to decide how to tackle your problems.

Interfaces or protocols

In Python, you can create an abstract base class as an interface for implementing subclasses. The ABC can specify some methods that any child classes must implement.

from abc import ABC, abstract method

class AbstractAnimal(ABC):

@abstractmethod

def make_sound(self) -> str:

pass

class Dog(AbstractAnimal):

def make_sound(self) -> str:

return "Woof!"

Sometimes, you may not find any abstract base classes in Python codebases, and the contract could be implicit. This concept is often called duck typing - If it walks like a duck and it quacks like a duck, then it must be a duck. With duck typing, the type or class of an object is less important than its methods and properties. Duck typing enables a polymorphism where the developer doesn’t require the object to be of a specific type but only to implement certain methods or properties. The implicit interface allows developers to replace objects with different implementations as long as the replacements fulfill the same contract, i.e., they have all the required methods and properties.

Duck typing is an inherent feature of Python and many other dynamically typed languages where type-checking is done at runtime. The principle allows for greater flexibility in code, but it also places more responsibility on the developer to ensure that objects are properly used.

Standard modules

Python’s standard library is vast and includes numerous modules. Given its broad scope, covering all of it in an introductory segment is impossible. This section will show the most common modules used while working with a Django project.

Let’s start with pathlib, an object-oriented module to handle filesystem paths. One of its common usages is in the settings of the project.

Let’s see an example:

from pathlib import Path

BASE_DIR is the project root (the directory containing manage.py)

BASE_DIR = Path(__file__).resolve().parent.parent

This is how you would define the location of the static files directory

STATIC_ROOT = BASE_DIR / 'staticfiles'

As you can see, the / is the operator to join paths; the pathlib module was introduced in Python 3.4, and it offers a great way to handle the filesystem.

JavaScript Object Notation (JSON) is a universally recognized format for storing and transferring data. Converting objects to JSON is named serialization, while the reverse is called deserialization. The standard library has a module that works with JSON, the json module.
OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Django and Python

		Introduction

		Structure

		Introduction to Python

		Understanding variables as references

		Parameter passing

		Interfaces or protocols

		Standard modules

		Error handling

		List comprehensions

		F-Strings

		Type hinting

		Coding style

		Introduction to Django

		The Django Philosophy

		Don’t repeat yourself

		Loose coupling and High cohesion

		Less code and quick development

		Explicit is better than implicit

		Models: Include all relevant domain logic

		Separate logic from the presentation on templates

		Views

		Caching

		Django 4.2 highlights

		Support for psycopg3

		Comments on columns and tables

		In-memory file storage

		Custom file storages

		Updates in password validation

		Minor updates and additions

		Python for Django

		Conclusion

		Questions

		2. Setting Up Your Development Environment

		Introduction

		Structure

		Introduction to Development Environments

		Managing Python Versions with Pyenv

		Understanding Virtual Environments

		Introduction to Poetry for Dependency Management

		Setting up a Django Project with Poetry

		Basic Configuration for a Django Project

		Introduction to Git for Version Control

		Creating a GitHub repository

		Branching models

		Git Flow

		GitHub Flow

		Trunk-based

		Advanced Git Usage: Using Worktree

		Conclusion

		Questions

		3. Getting Started with Django Projects and Apps

		Introduction

		Structure

		Introduction to the task manager

		Django project versus Django application

		Creating a new Django project

		Understanding the Django project structure

		Starting your first Django app

		Understanding the Django app structure

		MVT design patterns in Django

		Extending the MVT pattern with a service layer

		Configuring your Django app

		Brief introduction to Django’s development server

		Running your first Django app

		Conclusion

		Questions

		Exercises

		4. Django Models and PostgreSQL

		Introduction

		Structure

		Understanding Django models

		Creating your first model

		Django’s database API: Create, retrieve, update, and delete operations

		Understanding Django migrations

		Django’s admin interface: Registering models and manipulating data

		Introduction to Django’s ORM: Queries and aggregations

		Extending the models

		Ensuring data integrity with model constraints

		Conclusion

		Questions

		Exercises

		5. Django Views and URL Handling

		Introduction

		Structure

		Understanding Django Views

		Introducing Django’s Generic Views

		Writing Your First Django View

		Class-based Views Mixins

		URL Configuration in Django

		Creating URL Patterns for your Views

		Handling Dynamic URLs with Path Converters

		Understanding Django’s URL Namespace and Naming URL Patterns

		Using Django’s HttpRequest And HttpResponse Objects

		Introducing to Function-based Views

		Using Function-based Views with a Service Layer

		Pessimistic and Optimistic Offline Locking using Views and a Service Layer

		Error Handling with Custom Error Views

		Conclusion

		Questions

		Exercises

		6. Using the Django Template Engine

		Introduction

		Structure

		Introduction to Django Template Engine

		Django Template Language: Variables, Tags, and Filters

		Inheritance in Django Templates

		The Home Page View: Showing Tasks by Status

		Custom Template Tags and Filters

		Using Static Files in Django Templates: CSS, JavaScript, Images

		Django Template Context Processors

		Debugging Django Templates

		Optimizing Template Rendering

		Securing Django Templates

		Conclusion

		Questions

		Exercises

		7. Forms in Django

		Introduction

		Structure

		Understanding Django Forms

		Creating Your First Django Form

		Rendering Forms in Templates

		Handling Form Submission in Views

		Working with Form Fields

		Custom form fields

		File and Image Upload Field

		Data Validation with Django Forms

		Validators

		Clean methods

		ModelForm Validation

		Displaying Form Errors

		Advanced Form Handling: ModelFormsSets and Formsets

		Preventing Double Submission in Forms

		Conclusion

		Questions

		Exercises

		8. User Authentication and Authorization in Django

		Introduction

		Structure

		Understanding Django’s Authentication System

		Introduction to Django’s Middleware

		Understanding Django Middleware

		User Registration with Django’s User Model

		Authenticating Users: Login and Logout

		Managing User Sessions

		Session customization

		Session usage

		Session good practices

		Password Management in Django: Change and Password Reset

		Protecting Views with Login Required Decorators

		User Authorization: Permissions and Groups

		Multi-tenant authentication with Custom Django’s User Model

		Security Best Practices in Django

		Update all your libraries and frameworks

		Project Settings Hardening

		Turn off Debug in production

		Use Secure Cookies

		HTTP Strict Transport Security (HSTS)

		Content Security Policy (CSP)

		X-Content-Type-Options

		X-XSS-Protection

		Secure Referrer Policy

		Use Secure Password Hashing Algorithms

		Limit Access to Admin

		Keep SECRET_KEY Secret

		Set ALLOWED_HOSTS

		Conclusion

		Questions

		Exercises

		9. Django Ninja and APIs

		Introduction

		Structure

		Introduction to API design

		API Design-first approach

		HTTP Response status codes

		Introduction to Django Ninja

		Setting Up Django Ninja in Your Project

		Building Your first API with Django Ninja

		Request and Response Models with Pydantic

		API Documentation

		Understanding HTTP Methods in Django Ninja

		API Pagination

		Working with Path Parameters and Query Parameters

		Validation and Error Handling in Django Ninja

		Authenticating API Users

		Securing APIs: Permissions and Throttling

		Permissions

		Throttling

		Versioning Your API

		Conclusion

		Questions

		Exercises

		10. Testing with pytest

		Introduction

		Structure

		Introduction to testing and pytest

		Understanding test

		Test-driven development

		Introduction to pytest

		Installing and setting up pytest for Django

		Understanding Django test database and pytest

		Pytest-django fixtures

		Mocking and patching in tests

		Behavior-driven development

		Advanced pytest features: Parametrization, plugins, and configuration

		Parametrization

		Plugin coverage

		Plugin xdist

		Using marks

		Configuration tips

		Conclusion

		Questions

		Exercises

		11. Deploying Django Applications with Gunicorn and Docker

		Introduction

		Structure

		Introduction to Gunicorn

		Configuring Gunicorn for Django Deployment

		Understanding and Creating Dockerfiles for Django

		Using the image registry

		Introduction to Kubernetes

		Cluster

		Node

		Scheduler

		Pods

		Deployments

		ReplicaSets

		Services

		Configmaps and Secrets

		Ingress

		StatefulSets

		Configuring a Kubernetes cluster for a Django application

		Adding liveness and readiness probes

		Adding Instrumentation for Django

		Prometheus configuration

		Jaeger configuration

		Database Optimization: Queries and Indexing

		Conclusion

		Questions

		12. Final Thoughts and Future Directions

		Introduction

		Structure

		Summary of learnings: Building a task management app

		Evaluating the Django ecosystem: Strengths and weaknesses

		Exploring additional Django tools and libraries

		Potential enhancements for the task management app

		Staying updated with Django: Resources and communities

		Career opportunities with Django skills

		Thoughts on Django’s future: Upcoming features and trends

		Tips for continued learning and improvement

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Django and Python

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/line.jpg

OEBPS/images/logo.jpg

OEBPS/images/cover.jpg
ULTIMATE

Django for

Web App Development
Using Python

Build Modern, Reliable and Scalable
Production-Grade Web Applications with
Django and Python

